<< statistics

Limit Theorem

\[ \newcommand{\e}{\text{e}} \newcommand{\d}{\text{d}} \newcommand{\o}{\overline} \newcommand{\oX}{\o X} \newcommand{\oY}{\o Y} \newcommand{\oth}{\text{otherwise}} \newcommand{\sgn}{\text{sgn}} \newcommand{\dx}{\d x} \newcommand{\dy}{\d y} \newcommand{\dxy}{\dx\dy} \newcommand{\E}{\text{E}} \newcommand{\EX}{\E X} \newcommand{\EY}{\E Y} \newcommand{\Var}{\text{Var}} \newcommand{\Corr}{\text{Corr}} \newcommand{\Cov}{\text{Cov}} \]

1. Central Limit Theorem

We say the random variable list \(\{X_n, n\ge 1\}\) obys the central limit theorem, if the \(S_n\) approaches the normal distribution when \(n\rightarrow\infty\). That is, the cumulative distribution function \(F_n(x)\) of distribution the standardized \(S_n\) meets \[ \displaystyle \lim_{n\rightarrow\infty} \dfrac{S_n - \E S_n}{\sqrt{\Var S_n}} = \Phi(x) \] where \(\Phi(x)\) is the cumulative distribution function of the standard normal distribution.

For the IID \(\{X_n, n\ge 1\}\),

2. Law of Large Number

Suppose the random variable \(X, X_1, X_2, ...\) defined at the same probability space \((\Omega, \mathcal{F}, P)\), if we have \[ \lim_{n\rightarrow\infty} P(|X_n-X|\ge \epsilon) = 0 \] for any \(\epsilon > 0\), we say the random variable list \(\{X_n, n\ge1\}\) converges in probability, denoted as \(X_n \xrightarrow[]{P} X\).

We say the random variable list \(\{X_n, n\ge 1\}\) obeys the law of large numbers, if \[ \frac{S_n - \E S_n}{n}\xrightarrow[]{P} 0 \] where \(\displaystyle S_n = \sum_{k=1}^{n} X_k\).