\[ \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \]
Vector norm is such a function meets
The common norm, \(L_p\)-norm of vector \(X=(x_1, x_2, \ldots, x_n)^T\) is defined as \[ \norm{X}_p = \left( \sum_{i=1}^{n}|x_i|^p \right)^{1/p}, ~~~~ 1\le p \le +\infty \] And the most useful includes 1-norm, 2-norm, \(\infty\)-norm: \[ \begin{align} &\norm{X}_1 = \sum_{k=1}^{n} |x_k| \\ &\norm{X}_2 = \sqrt{\sum_{k=1}^n x_k^2} \\ &\norm{X}_{\infty} = \max_{1\le k \le n}\{|x_k|\} \end{align} \]
For the two different norm \(R_1(X), R_2(X)\) in \(R^n\), there must exist \(0<m<M<\infty\) for any vector \[ mR_2(X) \le R_1(X) \le MR_2(X) \] or \[ m\le \frac{R_1(X)}{R_2(X)} \le M \]
The definition of matrix norm is based on the vector norm, \[ \norm{A}_p = \sup_{X\neq 0} \frac{\norm{AX}_p}{\norm{X}_p} = \sup_{\norm{X}_p=1} \norm{AX}_p \] Common norm of matrix includes 1-norm, 2-norm, \(\infty\)-norm and Frobenius norm: \[ \norm{A}_1 = \sup_{X\neq 0} \frac{\norm{AX}_1}{\norm{X}_1} = \sup_{\norm{X}_1=1} \norm{AX}_1 = \max_{1\le j \le n }\sum_{i=1}^n|a_{ij}| \] \(\norm{A}_1\) is the max of sum of columns. \[ \norm{A}_\infty = \sup_{X\neq 0} \frac{\norm{AX}_\infty}{\norm{X}_\infty} = \sup_{\norm{X}_1=\infty} \norm{AX}_\infty = \max_{1\le i \le n }\sum_{j=1}^n|a_{ij}| \] \(\norm{A}_\infty\) is the max of sum of rows. \[ \norm{A}_2 = \sup_{\norm{X}_2 = 1} \norm{AX}_2 = \sqrt{\lambda_1} \] where \(\lambda_1\) is the max characteristic value of \(A^TA\). \[ \norm{A}_F = \sqrt{\sum_{i=1}^n\sum_{j=1}^n |a_{ij}|^2} \] which is the square root of the square sum of all elements.
for the characteristic value \(\lambda\) we have \(AX = \lambda X\), \[ |\lambda|\norm{X} = \norm{\lambda X} = \norm{AX} \le \norm A \norm X \] that is, the characteristic value of matrix is less than any norm of matrix.
spectral radius \(\rho(A) = \max_{1\le i \le n}\{|\lambda_i|\}\), where the \(\lambda_i, 1\le i\le n\) are the characteristic value of matrix \(A\). \[ \rho(A)\le \norm{A}, \norm{A}_2=\sqrt{\rho(A^TA)} \]