<< cryptography

RSA Public-Key Cryptosystem

The three main cryptosystem

Case 1. \(m, n\) are coprime, \[ m^{ed} = m^{1+k\varphi(n)} \equiv m \pmod n \] Case 2. \(\gcd(m,n) = p \neq 1\). Notice that \(p\) must be one of the two prime factors of \(n\). Let \(m \equiv r\cdot p^{\varepsilon}\), the first step is prove that \(m^{\varphi(n)} = 1\), to make it fit the Euler’s Theorem to behave like \(\gcd(m,n) = 1\): \[ m^{\varphi(n)} = r^{\varphi(n)}\cdot p^{\varepsilon(p-1)(q-1)} = 1\cdot(p^{q-1})^{\varepsilon(p-1)} = 1 \pmod q \] Second Step: \[ m^{1+k\varphi(n)} = m\cdot(1+k'q)^k = m\cdot(1+qL) \equiv m \pmod {pq} \]